Automatic target recognition in laser radar imagery
نویسندگان
چکیده
This paper presents an Automatic Target Recognition (ATR) system for laser radar (LADAR) imagery, designed to classify objects at multiple levels of discrimination (target detection, classification, and recognition) from single LADAR images. Segmentation is performed in both the range and non-range LADAR channels and results combined to increase object detection rate or decrease false positive detection rate. Through use of the range data, object subimages are projected and rotated to canonical orientations, providing invariance to translation, scale and rotations in 3-D. Global features are extracted for rapid target detection and local receptive field features are computed for target recognition. 100% detection and recognition rates are shown for a small set of real LADAR data.
منابع مشابه
SVM-based Target Recognition from Synthetic Aperture Radar Images using Target Region Outline Descriptors
The work in this paper explores the discriminatory power of target outline description features in conjunction with Support Vector Machine (SVM) based classification committees, when attempting to recognize a variety of targets from Synthetic Aperture Radar (SAR) images. In specific, approximate target outlines are first determined from SAR images via a simple mathematical morphology-based segm...
متن کاملDeep Learning for End-to-End Automatic Target Recognition from Synthetic Aperture Radar Imagery
The standard architecture of synthetic aperture radar (SAR) automatic target recognition (ATR) consists of three stages: detection, discrimination, and classification. In recent years, convolutional neural networks (CNNs) for SAR ATR have been proposed, but most of them classify target classes from a target chip extracted from SAR imagery, as a classification for the third stage of SAR ATR. In ...
متن کاملGeneral Linear Chirplet Transform and Radar Target Classification
In this paper, we design an attractivealgorithm aiming to classify moving targets includinghuman, animal, vehicle and drone, at groundsurveillance radar systems. The non-stationary reflectedsignal of the targets is represented with a novelmathematical framework based on behavior of thesignal components in reality. We further propose usingthe generalized linear chirp transform for the analysisst...
متن کاملPerformance of a High-Resolution Polarimetric SAR Automatic Target Recognition System
■ Lincoln Laboratory is investigating the detection, discrimination, and classification of ground targets in high-resolution, fully polarimetric, syntheticaperture radar (SAR) imagery. This paper summarizes our work in SAR automatic target recognition by discussing the prescreening, discrimination, and classification algorithms we have developed; data from 5 km of clutter and 339 targets were u...
متن کامل